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Abstract

Astrobiology missions to ocean worlds in our solar system must overcome both scientific and technological
challenges due to extreme temperature and radiation conditions, long communication times, and limited
bandwidth. While such tools could not replace ground-based analysis by science and engineering teams,
machine learning algorithms could enhance the science return of these missions through development of
autonomous science capabilities. Examples of science autonomy include onboard data analysis and subsequent
instrument optimization, data prioritization (for transmission), and real-time decision-making based on data
analysis. Similar advances could be made to develop streamlined data processing software for rapid ground-
based analyses. Here we discuss several ways machine learning and autonomy could be used for astrobiology
missions, including landing site selection, prioritization and targeting of samples, classification of ‘‘features’’
(e.g., proposed biosignatures) and novelties (uncharacterized, ‘‘new’’ features, which may be of most interest to
agnostic astrobiological investigations), and data transmission. Key Words: Ocean worlds—Machine learning—
Artificial intelligence—Neural network—Astrobiology. Astrobiology 22, 901–913.

1. Introduction

1.1. The need for science autonomy

Astrobiological discovery at an ocean world such as
Enceladus or Europa will experience both scientific and

technological challenges. The search for life and bio-
signatures deeper in the solar system faces enormous chal-
lenges for the supervision of science operations and planning.
Here we discuss the technological obstacles associated with
biosignature detection that are inherently intertwined with
the agnostic detection of life; we focus specifically on the
utility of autonomous operations in ocean worlds exploration,
and how advanced data and computer science techniques,
including machine learning (ML), could enhance astro-

biologically relevant science data return and even enable new
missions in these high-risk, high-reward environments.
Missions to ocean worlds in particular are confronted with
long communication delays (e.g., 70–90 min between Earth
and Titan), low bandwidth for data transmission, and po-
tentially low power or energy supply, all of which decrease
data transfer rates and volumes. In addition, missions to these
targets will have protracted time intervals for data analysis
and ground-in-the-loop, day-to-day decision-making (e.g.,
*6 h between operational decisions, Europa lander: Pappa-
lardo et al., 2013; Hand et al., 2017). Targets such as Europa
have the additional challenge of an extreme radiation envi-
ronment (Marion et al., 2003), which will limit mission
lifetimes and therefore the time to implement science-driven

1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
2Georgetown University, Washington, DC, USA.
3Microtell LLC, Greenbelt, Maryland, USA.
4Mission Control Space Services, Ottawa, Canada.
5Department of Geology, University of Maryland, College Park, Maryland, USA.
6Center for Research and Exploration in Space Sciences and Technology II (CRESST II), USA.
7Department of Astronomy, University of Maryland, College Park, Maryland, USA.

ASTROBIOLOGY
Volume 22, Number 8, 2022
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ast.2021.0062

901

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ar

yl
an

d 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
6/

13
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



data collection strategies. All of these complicating factors
strongly motivate development of more autonomous flight
instruments and both onboard and ground-based software
that can process data rapidly and consistently, streamlining
science data analysis to maximize science return. This need
has been recognized in the NASA Astrobiology Strategy
(Hays et al., 2015) and the National Academy of Sciences
Astrobiology Strategy reports (National Academies of Sci-
ences, Engineering, and Medicine, 2019) in findings that
emphasize the necessity for new ML methods to explore
large datasets and artificial intelligence applications that can
autonomously conduct analyses.

Much of the mission autonomy development to date has
focused on the onboard processing of raw data products
that enables a spacecraft and/or flight instrument(s) to
proceed safely and efficiently with mission objectives using
minimal human interaction (Gao and Chien, 2017), which
we term robotic autonomy. By this definition, robotic
autonomy would include automated navigation, instrument
startup/standby/shutdown, and deployment of sampling
mechanisms (e.g., robotic arm movement, analysis cham-
ber open/close). However, this definition of robotic
autonomy is inherently linked with autonomous functions
of instrumentation and data collection (e.g., Ellery, 2018)
and is the focus of this paper. For brevity and clarity, we
refer to these capabilities as science autonomy: the ability
of a science instrument to (1) analyze its own data in order
to calibrate itself, (2) adjust and optimize operational pa-
rameters based on real-time findings, (3) prioritize data
downlink, and (4) ultimately make mission-level decisions
based on real-time scientific observations, including rec-
ommendations for subsequent analyses (e.g., target selec-
tion, shifts in instrument mode such as narrow scanning
ranges, or use of a different instrument). In this paper, we
also use science autonomy to refer to Earth-based data
processing software that could be used for rapid data in-
terpretation by scientists. We recognize that science
autonomy by these definitions is and will be integrated into
further autonomous physical functions (e.g., robotic
autonomy) and therefore exists as an intricate symbiotic
relationship. We also offer a brief introduction on ML
techniques tailored for the astrobiology and ocean worlds
communities to better engage in future discussions of
autonomy. Machine learning and artificial intelligence
technologies could be used to the benefit of these com-
munities to enable fundamental science by systematizing
analyses toward an efficient search for canonical bio-
signatures, while also offering new agnostic insight to
broaden the scope of astrobiological investigations (Conrad
and Nealson, 2001; Chou et al., 2021).

1.2. Autonomy-enabling algorithms: An introduction

Artificial intelligence (AI) has revolutionized the world in
the past decades, encompassing any techniques that simulate
human intelligence. As more sophisticated and powerful
analytical instruments for astrobiology are developed and
mission data are collected, the resulting increase in data
volume necessitates advanced data analysis techniques that
are able to process, interpret, and/or visualize the data at a
rapid rate relative to manual processing by human investi-
gators. Machine learning (ML) is a branch of AI that

enables autonomous learning from datasets, trend/pattern
identification based on real-time findings, and decision-
making with minimal human intervention, and has become
an integral tool in robotic space exploration. A computer
system (an algorithm or program) can learn from data by
first studying ‘‘tasks’’ and gaining ‘‘experience,’’ where the
performance is measured, and the measured performance
drives the algorithm to improve with experience (Mitchell,
1997). The goals of ML algorithms are to (1) receive input
data, (2) use mathematical (e.g., statistical) analysis to un-
derstand the data, and (3) fit that data into models in order to
predict an output. Once the algorithm learns from the data, it
is able to observe patterns in the data or make predictions
about new and unknown data.

In this way, ML are algorithms that are able to compress
cumbersome data volumes (with or without loss of infor-
mation) for transmission, or identify and prioritize trans-
mission of data with the most interesting or unusual
characteristics (‘‘novelty detection,’’ Section 2.1.3). Some
autonomy development uses ML to recognize patterns and
develop predictive algorithms for data analysis or interpre-
tation, while attempting to maintain the fidelity (low rate of
error introduction) of the original data. There are several
types of ML algorithms. Supervised learning algorithms
are trained using input data that contains known information
(labels); discussions with scientists and technologists about
the structure, meaning, and importance of features of the
input data are used to create ML labels. When using su-
pervised learning algorithms, the dataset is split into a
training set (a subset of the data used to train the model)
and a testing set (a subset of the data, withheld during the
training phase, used to test the model and assess its per-
formances on unseen data). By comparing its results to the
correct outputs, the algorithm modifies the model to mini-
mize error and then learns from the process, allowing it to
predict the correct output from input data based on the
labels, and ultimately informing the predictions of new data
without labels. However, supervised ML training efforts
typically require large datasets (gigabytes to terabytes, de-
pending on the technique and the problem); thus, their de-
velopment for outer planet missions and astrobiology has
received less attention due to the smaller data volumes ex-
pected. While small data volumes are riskier for ML train-
ing, efforts to use small datasets are expected to be more
characteristic of ocean worlds and astrobiology missions.
Fortunately, recent advances in data science have already
begun to refine ML algorithms for smaller datasets (Li et al.,
2019). In comparison, unsupervised learning algorithms do
not use labeled data as input; the user does not explicitly
state known relationships between features in the data. The
main goal of unsupervised learning algorithms is to explore
and analyze the structure of the data in order to identify
patterns and similarities (clustering) or to simplify the da-
taset (dimensionality reduction) without bias. Unsupervised
learning algorithms are applicable when the phenomenon
driving the data is unknown. Rather than making predictions
about unknown data, the unsupervised algorithm makes a
conclusion about the relationship within the data, allowing
us to see patterns otherwise not recognizable by human
investigators. Therefore, both supervised and unsuper-
vised learning will be useful tools for future astrobiology
missions.
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Artificial neural networks (ANNs) are either supervised
or unsupervised ML techniques that are inspired by the
neurological structure of the human brain and aim to rec-
ognize underlying relations in a dataset by mimicking bio-
logical neural network (NN) processes. ML NNs are
software algorithms that simulate neurons whereby inter-
connected neurons (the building block of a NN) are capable
of processing information by dynamically responding to
external inputs. In an ML NN, a neuron is ‘‘a function’’—a
mathematical relationship from a set of inputs to a set of
outputs—therefore, a NN is ‘‘a network of functions,’’ or an
approximator of a larger function. A NN consists of several
layers (Fig. 1): an input layer (containing the input data), an
output layer (producing the predicted results), and one or
multiple hidden layers within (determines relationships
between input data). Layers are composed of nodes (neu-
rons), and each node is connected to another node from the
next layer with an assigned weight (relative importance /
significance). More precisely, a neuron computes the
weighted average of its input, which is then passed through
a nonlinear function (called activation function) to generate
an output. The output of a neuron can then be sent as input
to another layer which will repeat the same process. Because
this process can be performed using labeled or unlabeled
data, the relative importance / significance of a particular
input to the output can be evaluated using supervised or
unsupervised ML. For a more detailed description of the
mathematics used in ANNs, we direct the reader to several
reviews (Knerr et al., 1992; Kepka, 1994; Jain et al., 1996;
Bengio et al., 2003; Basu et al., 2010; Lazli and Bouka-
doum, 2013; LeCun et al., 2015; Bala and Kumar, 2017;
Abiodun et al., 2019; Emmert-Streib et al., 2020).

The primary task of a NN is to transform highly complex
input into a meaningful output. A common analogy of a NN
is that of a human brain processing visual data collected
with their eyes. In this analogy, light is collected by the
retinal array (input layer), which is then classified based on
learned experience, including multiple steps involving pro-
cessing the image data and extracting information (hidden

layers). The brain then makes decisions about the sur-
roundings by establishing a representation (output layer).
While this example greatly simplifies the multitudes of
complex processes associated with the analysis of visual
data by the human brain, it serves as an intuitive analogy for
applying ANN algorithms to astrobiological problems. For
example, Storrie-Lombardi and Hoover (2004) investigated
terrestrial fossils in astrobiologically relevant analog targets
and classified them from their surrounding matrix using an
ANN (Fig. 1). Compositional measurements collected on
the fossil and surrounding matrix were pre-processed using
principal component analysis (PCA), a dimensionality re-
duction technique, to determine which elemental abun-
dances are most important in distinguishing between the
matrix versus fossil material. These elements were used as
input neurons/dataset for the ANN. The output predictions
from this algorithm were then used to determine the original
source of the samples (fossil versus matrix). The ANN was
optimized by cross-referencing the ML predictions against
classification done by a human expert or by comparing to
the classes identified by the PCA. This type of ANN analysis
helps provide a quantitative probabilistic methodology for
spatially classifying biogenic versus abiotic materials.

Artificial neural networks can be more complex and
composed of several hidden layers, such as in deep learning
algorithms and autoencoders. Autoencoders have the ad-
vantage of having a simple ANN architecture, with several
layers organized in a bottleneck. Autoencoders are ANNs
capable of learning efficient representations of the input data
without any supervision and are a form of data compression.
Autoencoders, through an iterative training process, try to
learn the features of a given input (for instance an image)
and reconstruct the desired output (desired image) from
these features. The two main tasks of an autoencoder are (1)
to encode the input data into a condensed vector (called
latent representation) and (2) to decode the condensed vector
to restore the original data. Convolutional neural networks
(CNNs) are a class of deep learning NN specialized in
processing gridlike data (such as images or time-series data).

FIG. 1. Example workflow beginning with compositional analysis and data pre-processing of fossil versus matrix material
in geologic samples. The raw data can be used as input for a neural network and machine learning algorithm training to
autonomously distinguish and characterize fossil versus matrix material. Modified with permission from Storrie-Lombardi
and Hoover (2004). Color images are available online.
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Like NNs, CNNs are composed of different layers and can
be described as the combination of two main building
blocks: (1) the convolution block that enables the feature
extraction of the data and (2) the fully connected block that
performs the classification task. The main advantage is that
the model learns an internal representation by extracting
features from the input data and does not require engineered
features from domain expertise. CNNs are commonly used
in image processing and recognition. We refer the reader to
several recent reviews of CNNs and deep learning (Aloysius
and Geetha, 2017; Ajit et al., 2020; Dhillon and Verma, 2020;
Khan et al., 2020; Alzubaidi et al., 2021; Sony et al., 2021).

As ML tools and predictive algorithms advance, mission
concepts and science goals previously considered too risky
or impossible due to data, time, or instrument power limi-
tations can be explored (Azari et al., 2021). Importantly,
development of intelligent flight instruments will require
accurate training datasets obtained from planetary analog
environments, laboratory studies, and simulated data from
model predictions, as well as rigorous testing of the algo-
rithm(s) with an instrument of equivalent technology
readiness level (Da Poian et al., 2020) using a priori (prior)
learning as a complement to onboard learning. A hybrid of
these methods, in which ML algorithms are developed
based on computational simulation and laboratory/plane-
tary analog studies, would help predict, interpret, validate,
and verify in situ measurements, and would be beneficial to
science autonomy when availability of datasets is limited.
The software development for an ‘‘intelligent’’ flight in-
strument necessitates a methodical evaluation process that
can assess its critical function in not only executing the ML
programs but also the hardware that will provide the
computational power for the data processing. This can be
achieved first on the ground (in the laboratory) and then in
simulated, relevant space environments with mission con-
straints as would be expected on ocean worlds, which in-
cludes not only extreme temperatures and radiation but also
limited bandwidth and data storage capacity and long
communication times.

1.3. Onboard instrument autonomy

We consider two broad categories of science autonomy:
flight instrument (onboard) autonomy and data interpreta-
tion autonomy. Onboard flight instrument autonomy deals
with an instrument’s ability to autonomously collect and
selectively transmit data to Earth. Instruments capable of
autonomous data collection, both robotically and in terms of
decision-making (what samples to analyze, when, for how
long, and fidelity of transmitted data) would, for example,
greatly enhance the science return for missions with limited
lifetimes due to extreme environments, and are being
planned for missions such as the proposed Europa lander
(Hand et al., 2017). An increasingly important onboard
autonomy consideration is that of data transmission; some
flight investigations can generate far more raw data than can
be downlinked to Earth; therefore, prioritizing downlinked
data is a critical operation for future missions. For example,
data volume for mass spectrometers has grown by orders of
magnitude over the past decade (Guo, 2017; Da Poian et al.,
2020), while data transmission rates are expected to increase
by at most one order of magnitude due to fundamental limits

of physics (e.g., antenna size and transmitter power limited
by the spacecraft’s mass, volume, and power or energy
budgets). This difference between anticipated data volume
and transmission implies that as much as 90% of the data
generated by, for example, mass spectrometers on future
missions—a potentially powerful life-detection technique—
could not be transmitted to Earth.

1.4. Data interpretation autonomy

The second category of science autonomy focuses on data
interpretation. Much of the mission data collected to date
requires some level of processing and interpretation by in-
dividuals or working groups of engineers and scientists.
However, such methods require significant personnel time
and work efforts by one or more experts, which may not
always be feasibly supported throughout the lifetime of a
mission. These limitations can be overcome through the use
of autonomous software able to make decisions depending
on real-time observations/data. For example, the Autono-
mous Exploration for Gathering Increased Science (AEGIS)
system uses ML algorithms to automate interpretation of
visual images to assist in subsequent sample selection for
the ChemCam instrument on board the Mars Science La-
boratory (MSL) (Estlin et al., 2014; Francis et al., 2017),
which has resulted in a significant increase in sampling and
analysis. While data processing and analysis by experts is
necessary for scientific advancement (and discoveries con-
tinue for years beyond a prime mission), science return
would be enhanced by automating certain tasks such as
initial reconnaissance for sample selection (Section 2.1).

Onboard instrument autonomy for sample selection and
certain routine science measurement tasks (traditionally
done by humans) could not only improve sampling cadence
for remote and in situ planetary missions but also enable
science activities in locations where explicit human direc-
tion is difficult or impossible. This capability will be nec-
essary as missions extend deeper into the solar system and in
extreme environments (e.g., subsurface oceans), where data
transfer rates are substantially outpaced by data volume
generation rates, making supervision and planning of every
analysis increasingly challenging. Beyond ocean worlds
astrobiology, science autonomy could also open new cap-
abilities for short-lived missions such as Venus surface
investigation (as brief as a few hours) or atmospheric
descent probes.

2. Science Autonomy Relevant to Ocean Worlds
Astrobiology

In the following sections, we describe several critical
needs for science autonomy for ocean worlds exploration,
focusing on ways in which autonomous operations could be
deployed on board a mission or during ground-in-the-loop
evaluations to enhance astrobiologically relevant science
data collection.

2.1. Sample target selection

2.1.1. Landing site selection. Currently, there are no
established criteria for how to select a sample analysis site
(£ cm scale) for an astrobiology mission. Selection of a
landing site (km scale) for in situ astrobiology seeks to
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mitigate engineering constraints (landing, mobility, and
operations safety) while satisfying mission science goals.
For example, the entry, descent, and landing (EDL) system
for the Mars 2020 Perseverance rover autonomously se-
lected and landed in a low topographic relief area of the
Jezero Crater floor (engineering constraints) (Nelessen
et al., 2019), just east of an identified ancient river delta that
is the focus of astrobiological science goals for the mission
(Grant et al., 2018; Farley et al., 2020). Possible landing
sites for the proposed Europa lander are Thera Macula or
Conamara Chaos, both regions assumed to be recently dis-
turbed due to the irregular icy blocks and reddish color
characteristic of younger surface material on Europa (Fig. 2)

(Schmidt et al., 2011). Continued radiation exposure results
in lighter coloration (Hand and Carlson, 2015; Schmidt,
2020). Either region’s young surface could express material
from the sub-ice ocean or intra-ice liquid pockets and
therefore is considered an ideal surface target for astro-
biology exploration (Kereszturi and Keszthelyi, 2013;
Pappalardo et al., 2013; Hand et al., 2017). The proposed
Europa lander intends to employ autonomous software
similar to the EDL system used on MSL and Mars 2020 to
identify surface characteristics (engineering constraints:
e.g., large blocks of ice, steep inclines) and autonomously
choose a favorable site for landing. While EDL focuses on
safe landing site selection, we suggest that similar Europa-
specific technology could pair hazard identification with
spectral imaging that uses the albedo of observed reddish-
brown areas to indicate landing sites with more astro-
biologically desirable sampling targets. In the case of
Europa, the low-albedo chaos regions are indicative of
younger salt-bearing surface material that has undergone
limited irradiation, which would imply lesser degradation of
possible biosignatures transported from the ocean below
(Nordheim et al., 2018).

In contrast, potential astrobiological missions to En-
celadus focus on the collection of samples within and from
fallout of Enceladus’s plumes, which represent ‘‘fresh’’
material from the moon’s interior oceans. The Enceladus
Life Finder (ELF) and Enceladus Life Signatures and Ha-
bitability (ELSAH) mission concepts would sample the
plumes directly during several flybys (Cable et al., 2016;
Eigenbrode et al., 2018), while the Enceladus Orbilander
mission concept would orbit before landing using autono-
mous terrain relative navigation (MacKenzie et al., 2021).
Sun et al. (2020) simulate various viffing (vector-in-forward
flight) descents through Enceladus’s plume(s) using lateral
thrusters to maximize data collection about the plume while
minimizing DV to deliver a penetrator spacecraft to En-
celadus’s surface, concluding that a biomimetic (quasi-
spiral) search strategy would be the best candidate for de-
velopment. Additional strategies, such as onboard plume
source localization algorithms, are being explored to enhance
targeting of Enceladus’s vents through a sequential Monte
Carlo method using a particle-based odor source localization
technique (e.g., Sun et al., 2021).

2.1.2. Sampling target selection. Once a spacecraft is
landed and operational, the next challenge is to identify
ideal sample targets (£ cm scale) within the reach of the
spacecraft’s sample handling system, which would include
target identification, target access, sample collection, and
sample processing. Of those capabilities, only the first—
target identification—is separate from engineering and
mission constraints. Astrobiological sample target selection
is arguably the most challenging and subjective decision.
This is due to a lack of consensus within the astrobiology
community on what the most important/favorable features
(e.g., chemical or morphological) are for life detection in a
location different from Earth. Even so, some reconnaissance
spectroscopic studies could be automated and thus enhance
target selection procedures. For example, on Earth, many
biological entities express distinct spectral differences from
their (abiotic) environment. Photosynthetic life produces
biological pigments that absorb colors in the visible

FIG. 2. (a) Thera Macula and (b) Conamara Chaos re-
gions of Europa, both possible landing sites for an in situ
Europa mission such as the proposed Europa lander, taken
by the Galileo spacecraft. Red coloration is considered to
indicate younger surface material on Europa (NASA/JPL/
University of Arizona). Color images are available online.
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wavelength range (400–700 nm) (Seager et al., 2005; Kiang
et al., 2007), and chemosynthetic microbes have shown a
dynamic color range depending on nutrient availability
(Brock and Freeze, 1969) (e.g., the Grand Prismatic Spring,
Yellowstone National Park, USA). Nonphotosynthetic pig-
ments can also serve as biosignatures using spectral data
(Schwieterman et al., 2015). An observation of a spectrally
interesting location could provide a compelling incentive to
further explore the samples using chemical characterization
techniques such as mass spectrometry. This approach may
be complicated by extreme radiation environments (e.g.,
Europa), which will necessitate sampling below the surface
where organic material potentially deriving from life will be
better shielded from radiolytic degradation (e.g., >10 cm
below surface: Hand et al., 2017; Nordheim et al., 2018).

Visual characteristics ideal for astrobiology will likely be
specific to a planetary target, and therefore a combination of
nondestructive techniques may be the most robust method
for selecting samples for follow-on destructive sample
analysis. Nondestructive techniques may have specific
sample requirements (e.g., surface characteristics, albedo,
sample type [solid / liquid or rocky / icy]); therefore, a
targeting procedure could be implemented based on a list of
requirements. For example, the Scanning Habitable En-
vironments with Raman and Luminescence for Organics and
Chemicals (SHERLOC) instrument on board the Mars 2020
Perseverance rover is characterizing organic matter and
minerals on the martian surface to evaluate habitability
markers, prebiotic chemistry, and potential biosignatures.
SHERLOC includes an Autofocusing and Contextual Ima-
ging (ACI) subsystem that provides image z-stacks, which
feeds into a macro mapping mode and autonomous micro
mapping mode, triggered by either greatest signal intensity
or specific spectral features, and may include point spectra
(Beegle et al., 2015). Such nondestructive techniques, which
are also under development for ocean worlds and Venus
missions (Wang et al., 2015; Tallarida et al., 2018), could
serve to triage high-priority samples for more invasive an-
alytical techniques such as laser desorption mass spec-
trometry (LDMS).

2.1.3. Relevant machine learning applications. While
not exhaustive, in this section we highlight some ML
techniques that may be utilized for automated sample site
characterization and sample targeting for subsequent che-
mical/morphological analyses. We classify two broad
qualities, termed novelty and feature detection, that could be
characterized by ML and autonomously detected in a
planetary environment, and how these qualifications relate
to life detection.

Novelty detection. Data mining techniques such as nov-
elty detection—the identification of novel (new) or unob-
served data that an ML system has not seen during its
training (Miljković, 2010)—can be used in the identification
of targets. Novel features can be categorized as those that
(1) are well documented but are known to occur rarely, (2)
have not been detected before, (3) are not expected (i.e., an
outlier in the given setting), or (4) appear different from
previously seen features of the same type. Known novelties
(i.e., those from categories 1, 3, and 4) are usually studied
using a supervised learning approach designed to classify

these novelties with only a few training examples. The
model learns to identify the class that is underrepresented in
the training data by leveraging some combination of learn-
ing from well-represented classes (Bart and Ullman, 2005;
Vinyals et al., 2016), leveraging external semantic infor-
mation (Wang et al., 2017), or simulating more examples of
the novel classes with which it can then train on (Fei-Fei
et al., 2006). Since this is a data-intensive activity and the
available data from ocean worlds environments are sparse
and low-resolution, early ML algorithms may be trained
using data available on Earth; then that knowledge would be
‘‘transferred’’ (or applied) to a new environment, termed
transfer learning. Transfer learning leverages developed al-
gorithms on large datasets from relatively similar data in
order to adapt algorithms to more limited analog environ-
ment training data. For example, a representation of basaltic
rocks could be learned by using feature representations of
terrestrial basaltic rocks, expected structural/mineralogical
characteristics, or a quantity of simulated basaltic outcrop
examples in order to identify basaltic features on, for
example, the Moon or Mars.

In contrast, the lack of definition and examples of the
novelty class for unknown novelties (i.e., category 2) re-
quires an unsupervised learning approach. Previous work has
shown promising results in using autoencoder networks to
detect novel observations and sensor readings (Hinton, 2006;
Xiong and Zuo, 2016; Richter and Roy, 2017; Raimalwala
et al., 2020; Stefanuk et al., 2020). Recent work by Kerner
et al. (2019, 2020) has demonstrated the capability to detect
novel geological features in multispectral images of the
martian surface using autoencoder approaches. They also
compared several methods on the multispectral dataset—
Reed Xiaoli (RX) detectors, principal component analysis
(PCA), generative adversarial networks (GANs), and
autoencoders—and show that (1) the RX and autoencoders
trained with structural similarity loss are able to detect
novelties based on morphological features, which are not
detected by other methods, (2) PCA and GANs are better
suited for detecting spectral-feature novelties, and (3) auto-
encoders provide the most useful way to visualize the de-
tection of novel features.

Feature detection. Beyond the detection of novel features,
it is also important to characterize the known and commonly
occurring features in the environment observed by imagers
or spectrometers. A widely used technique in Earth science,
now being used on Mars (Francis et al., 2017) and devel-
oped for the Moon (Raimalwala et al., 2020), is CNNs that
classify natural features and complex patterns in an image
(Fig. 3). This classification is performed using supervised
learning, in which, for example, the features in a terrain
image are labeled in minute detail to create a deep learning
(e.g., CNN) model of terrain that is representative of a
mission’s environment. Features classified from multiple
images can be aggregated to construct a rich representation
of the surrounding environment and provide geologic con-
text, which can be used by other software applications to
make decisions on prioritizing targeting or downlink of in-
strument measurements. While missions to Mars have col-
lected sufficient data for such modeling using years of
chemical (ChemCam, MSL) and high-resolution imaging
(HiRISE, MRO) data, an ocean worlds mission could use
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models trained on data from a high-fidelity analog envi-
ronment such as Antarctic and Arctic sea ice, and use
transfer learning techniques to adapt algorithms to labora-
tory simulation datasets that include extreme gravitational,
thermal, pressure, and radiative conditions.

While the above techniques are powerful tools to rapidly
evaluate surface characteristics and select a target for
analysis, beyond a visual detection of a life-form, data-
sets such as mass spectra may be more likely analyzed in
search for potential biosignatures (e.g., complex biological
molecules or molecular fossils); and analytical methods for
tandem mass spectrometry (MS/MS) such as the kinetic
method, chiral recognition ratio method, and photodisso-
ciation mass spectrometry method, or ion mobility mass
spectrometry have shown promise for measuring enantio-
meric excess and chiral differentiation (Han and Yao,
2020). During a mission, ice and/or mineral samples would
be collected, potentially triaged by nondestructive methods
(as described above), and transferred to a mass spectrom-
eter for detailed analysis. In particular, features such as
complex organic molecules (Marshall et al., 2017, 2021),
enantiomeric excess of chiral organic molecules (Glavin
et al., 2020), and large observed isotopic fractionations
(e.g., tens of per mil (&) in d13C) are considered poten-
tially powerful indicators of life (Hayes, 2001). Ongoing
efforts in mass spectrometry analysis for astrobiology have
also shifted focus from searching for organic biosignatures
indicative of Terran-based life (Summons et al., 2008) to
those that may be based on unfamiliar biochemistry (i.e.,
life as we don’t know it, or ‘‘agnostic biosignatures’’)
(Conrad and Nealson, 2001; Johnson et al., 2018; Chou
et al., 2021). Several types of onboard autonomy should
enhance our ability to identify the most characteristic or
unique spectra for further analysis, as discussed in the next
three sections.

2.2. Critical evaluation of calibration data

Regardless of the specific environment (laboratory vs.
planetary surface), instruments routinely go through a cali-
bration sequence before and/or after characterizing un-
known samples to achieve maximum, for example, ion
transmission, signal reproducibility, and/or quantitative ac-
curacy depending on the main science objective. Calibration
typically involves analyzing one or more reference materials
and tuning any number of adjustable instrument parameters,
such as gas flow rates, filament current settings, and voltages
or timing delays applied to active electrodes, while main-
taining baseline performance metrics. Thus, real-time vali-
dation of data quality is a prime candidate for onboard
science autonomy.

Data derived from the analysis of well-characterized
reference materials are the most common products gener-
ated by instruments. Reference materials facilitate tracking
of instrument performance as a function of time and also as
spaceflight integration and testing progresses; they also
provide a reference by which to compare subsystem func-
tionality during tuning and troubleshooting stages. There-
fore, most instruments have an abundance of high and low
quality calibration data (e.g., sensitivity, accuracy/precision).
These volumes of calibration data are ideal for training and
validating ML algorithms. If an instrument performs a
‘‘good’’ calibration—however such a pass/fail criterion may
be defined—the onboard software will authorize the analysis
of unknown samples without needing ground-in-the-loop
human interactions. Such calibration data could be stored
and transmitted at a later time so that the data sent back first
are preferentially from samples, enhancing data economy
(the effective cost per byte of science data), the utilization of
onboard resources, and ultimately the prioritization of sci-
ence return. This approach is currently in development by the

FIG. 3. Example of terrain classification using a deep learning technology developed by Mission Control (Raimalwala
et al., 2020). Rover-based images from a Mars 2020 analog research study in Iceland were segmented into Mars-relevant
terrain classes to support scientific terrain assessment as part of SAND-E (Semi-Autonomous Navigation for Detrital
Environments). Color images are available online.
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Mars Organic Molecule Analyser (MOMA) science and
engineering team, which seeks to design ML-based software
that is able to discriminate calibration mass spectra from
mass spectra obtained from the analysis of planetary analog
samples (Da Poian et al., 2020). More progressive autono-
mous decisions could enable advanced calibration techniques
for more focused investigations, such as instrument tuning
that maximizes mass spectrometric ion transmission within a
narrow mass range for isotopic studies, or in situ trouble-
shooting in response to degrading calibration data quality.

2.3. Discrimination of data at a threshold

Once an instrument has begun data collection on an un-
known sample, the next opportunity for autonomous
decision-making is the discrimination of high-priority data,
such as those above the threshold of a limit of detection
(LOD), those that display unique or diagnostic patterns, and
those that corroborate observations collected by other pay-
load instruments. Various routine data pre-processing tech-
niques may be employed prior to data triage: background
removal via polynomial fits, stacking of multiple spectra,
noise detection via deep learning NNs, and so on. These
methods enhance signal-to-noise ratios of raw data, enable
automatic determination of LODs, and assist the selection of
high-quality data for subsequent qualitative and/or quanti-
tative interpretation. For example, if a mass spectrometer
has an LOD of 20 ppbw for glycine, any pre-processed data
collected that indicate £20 ppbw glycine in the sample
would be considered low priority using that metric alone.
The instrumental response to background signals and/or
calibration analytes can be used to infer quantitative infor-
mation. A possible use of such information could have been
the detection of molecular hydrogen (H2) in Enceladus’s
plume by the Ion and Neutral Mass Spectrometer (INMS) on
board the Cassini spacecraft. Waite et al. (2017) demon-
strate the detection of H2 above background +3s, which
combined with the detection of silica particles in the plume
(Hsu et al., 2015) suggests hydrothermal activity at the in-
terface of the subsurface ocean and rocky core. Subsequent
comparison of data across multiple analytical runs and/or
instrumental suites could prioritize features of interest with
high reproducibility above the established LOD (e.g.,
background +3s). An astrobiological example might in-
clude prioritizing spectra that exhibit a broad range of high
carbon number molecules above a specified LOD, or above
the limit of quantitation (e.g., background +10s) for more
rigorous statistical analysis.

Diagnostic patterns and/or features in datasets can also
provide qualitative assessments of raw data, which can be
characterized via pre-trained ML algorithms or using an
exploratory approach. For instance, ML classifiers that pre-
trained on terrestrial rock images achieved 100% accuracy
in the classification of martian lithologies observed in high-
resolution images collected by the Curiosity rover (Li et al.,
2020). Mass spectra of different organic compounds such as
lipids, proteins, and aromatic hydrocarbons show charac-
teristic peak distribution patterns. Therefore, spectral in-
formation such as mass range, number of peaks, and relative
abundances are useful variables to evaluate the presence of
complex molecules and classify their molecular classes
(Guttenberg et al., 2021). Data obtained from multiple

measurements could be compressed using dimensionality
reduction methods (e.g., PCA), summarized using statistical
analysis (e.g., average and standard deviation), or simplified
using sum-averages of similar measurements to reduce the
volume requirements for data transmission. Prioritizing
which data to send back first based on the transmission
constraints (i.e., transmission rates and data volume) could
be critically accomplished based on signal intensities, fea-
tures, and/or patterns observed above using a decision tree, a
weighted scoring system of multiple criteria, or statistical
analysis to assist system-level or mission-level decision-
making. We present an ocean-worlds relevant example of
this workflow for Orbitrap mass spectrometry analysis in
Section 2.4.

2.4. Novelty and feature detection

Following the detection of a novelty or feature (Section
2.1.3) (e.g., the detection of one or more peaks above the
LOD within a targeted mass range), the data can be either
preferentially sent back first for ground-based analysis or
processed further using onboard software to determine
composition or inform on follow-up experimental proce-
dures. A fast and preliminary analysis is encouraged for
onboard data processing in order to isolate low-priority data
without further analysis. Quick assessments of data can
provide timely instructions to tune instruments for subse-
quent measurements in order to collect a more optimized
signal. For example, absence of peaks in mass spectra can be
made to autonomously trigger output energy of an LDMS
laser source to enhance multiphoton ionization, based on a
systematic ML of ionization responses. In addition, more
extensive onboard data processing would provide an op-
portunity for ground-based scientists and technologists to
make critical decisions about how to conduct follow-up
experiments based on real-time data interpretation. For ex-
ample, MS/MS techniques could be applied to prospective
macromolecular complexes detected with sufficient ion in-
tensity by the MOMA instrument in order to elucidate
structural information (Goesmann et al., 2017). Because
MS/MS requires the selection of which ions of interest are
the most compelling to fragment, autonomous software
could effectively circumvent the need to involve ground-
based (human) decision-making and lose valuable time. The
essence of autonomous decision-making is to select an ac-
tion that maximizes science return while minimizing asso-
ciated risks for subsequent implementation. Without
knowing what could happen next, a decision computation
model (such as those built on Markov decision processes or
recurrent neural nets) must balance between the scientific
gain when a specific ion of interest is chosen to perform
MS/MS and the cost (e.g., data volume and time) when
additional measurements are taken. This onboard autonomy
would therefore enable ground-based scientists to focus on
analysis of optimized science data.

Moreover, information sharing between instruments can
also facilitate data collection for the greatest science return.
Prompted classification and interpretation of data collected
from non-invasive techniques, such as imaging or high-
resolution spectroscopy, can critically assess the textural
and/or chemical heterogeneity of environments and targe-
ted samples (Section 2.1.2). Such information can inform
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subsequent measurements, such as mass spectrometry or
X-ray fluorescence spectroscopy, about the location of
highly interesting areas or the number and distribution
of measurements needed to obtain spatially representative
results.

When using or developing multiple data processing pro-
cedures, a workflow can be tailor-made to streamline data
collection, data processing, and onboard instrument payload
coordination. An example of an AI data processing work-
flow proposed to handle time-series data generated from the
Characterization of Ocean Residues and Life Signatures
(CORALS) Orbitrap mass spectrometer is shown in Fig. 4.
Data processing of transient spectra recorded by CORALS
could not only be able to identify the stoichiometry of
molecules via exact mass measurements but also simulta-
neously derive collision cross-sections to elucidate molec-
ular structures, and inform subsequent scans with narrower
mass ranges to improve local dynamic range and quantify
isotopic abundances (Arevalo et al., 2018; Willhite et al.,
2021). Such progressive analyses and data processing may
require additional resources (e.g., power, energy, data vol-
ume) but could maximize the useful information per byte of
missions with limited lifetimes and constrained communi-
cations, such as the proposed Europa lander mission.

Autonomous data analysis is currently in progress by
several research groups, yet the current algorithms devel-
oped to our knowledge have focused primarily on discrim-
ination of calibration data and data below threshold criteria
(Sections 2.2 and 2.3), as well as data compression tech-
niques for downlink (Section 2.5) (Reeder and Gough, 1996;
Da Poian et al., 2021; Xie et al., 2021). Developing ML
algorithms for astrobiological use is further complicated by
novel features such as agnostic biosignatures, that demon-
strate the inherent complexity of organic compounds (e.g.,

biopolymers), elemental and isotopic abundance patterns in
assemblages of compounds and mineral phases, morpho-
logical features (e.g., concretions or biomats), surface
complexity (e.g., abundant surface expressions on cells vs.
simple mineral faces), and sequestration of certain elements
in cells that are reflective of biological activity rather than
abiotic sources (e.g., Williams and Da Silva, 2000; Sla-
veykova et al., 2009; Kempes et al., 2016; Marshall et al.,
2017; Johnson et al., 2018; Neveu et al., 2018; Chan et al.,
2019; Pohorille and Sokolowska, 2020; Kempes et al., 2021;
Marshall et al., 2021). Thus, access to as many different
classes of prospective biosignatures as possible, commonly
referred to as orthogonal detection, is a major objective of
next-generation payloads to increase confidence in findings
and avoid false positives. Autonomous data analysis and
onboard command tools hold the promise to categorically
rank broadband spectra and determine which samples war-
rant more focused investigation without waiting for ground-
based decisions.

As an example, the Europa Lander Science Definition
Team report (Hand et al., 2017) indicates that ‘‘sample
acquisition is anticipated to last 5 hours’’ and ‘‘the science
and engineering teams have 8 and 16 hours, respectively, to
plan and generate commands for the subsequent [24 hrs],
which includes making the decision on the activities for the
next [24 hrs].’’ A single Earth day could result in *70 Mb
of raw, unprocessed data, transmitting at a rate of 80 kbps
that would need to be processed and analyzed before science
and engineering teams could make operational decisions and
send updated commands. The short mission duration
(20+ days per the baseline scenario), abbreviated analysis
times as described above, and large data volumes generated
necessitate the development and deployment of science
autonomy to maximize science return. Such autonomous

FIG. 4. A provisional CORALS Orbitrap mass spectrometer onboard data processing workflow composed of four interconnected
sections: instrumental responses and data collection (yellow), preliminary/quick analysis (green), more detailed onboard data
processing (orange), and a proposed priority ladder for deciding which data should be sent back (gray). Bold text highlights the four
primary steps for onboard data processing. The communication between these four sections streamlines data collection and
processing, adjusts instrumental parameters autonomously to reach maximum performance, and critically evaluates the priority of
data products for return transmission. FFT = fast Fourier transform. S/N = signal-to-noise ratio. Color images are available online.
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applications would also be highly important for the Dra-
gonfly mission scheduled to launch to Titan by 2027. In
particular, the Dragonfly Mass Spectrometer (DraMS), a
payload investigation on board the Dragonfly octocopter,
comprises heritage subsystems derived from the Sample
Analysis at Mars (SAM) and MOMA instruments (Lorenz
et al., 2018). Like MOMA, DraMS will be capable of MS/
MS, allowing for controlled fragmentation of molecular
species to provide robust structural analysis of highly
complex molecules. Given the vast distance between Earth
and Titan, the light travel time naturally inhibits the quick
downlink of data to be processed and peaks to be chosen for
fragmentation by ground-based personnel. Therefore, the
development of autonomous software is highly advanta-
geous to select feature or novelty peaks based on ML al-
gorithms that were trained on calibration data during
integration and test activities, chemical data collected from
laboratory simulants of Titan’s atmosphere, or newly col-
lected data derived from the in situ analysis of samples on
the surface of Titan.

2.5. Data transmission and downlink

An additional complication that could be mitigated using
ML is in managing how data is transmitted to Earth,
whereby the volume of collected data often exceeds the
transmission rate. While missions closer to Earth do not
experience the same strain on the ability to transmit data
(and receive commands), data of astrobiological significance
(e.g., fluorescence, mass spectrometry, Raman spectroscopy,
microscopy) collected during outer solar system ocean
worlds missions will inevitably outpace the capacity to
transmit back to Earth. Two current strategies for reducing
transmission volumes are compression and segmentation.
Autoencoders are popular ML algorithms for data com-
pression that can also be used to reduce dimensionality in a
dataset. An autoencoder stacks multiple nonlinear transfor-
mations that can model complex functions, whereas PCA (a
widely used tool in dimensionality reduction) only uses
single linear transformation. The PCA transformation maps
data as orthogonal vectors in multidimensional space where
the axes (also called ‘‘principal components’’) represent the
maximal amount of variance in the dataset (e.g., the direc-
tions capturing the most information of the data). An auto-
encoder, on the other hand, maps (encodes) input to a latent
space with reduced (compressed) dimension but has been
trained to faithfully reconstruct (decode) input. Data with
high dimensionality (i.e., images) can be projected or en-
coded into lower-dimension representations, which can then
be recovered using a pre-trained decoder network without
significant information loss. Training of a high-performance
autoencoder, however, requires large synthetic or empirical
datasets. Segmentation, on the other hand, simplifies the
representation of multidimension datasets into groups or
clusters of similar characteristics, yet omission of details
may induce information loss. Both techniques could reduce
data volume, but high compression ratios can introduce
severe artifacts. Subtle features in spectra can be lost, and if
the most important or valued measurements are only a small
fraction of the total data collected, then compressing and
preserving the whole population is often done at the expense
of the vital subpopulation. Thus, autoencoders and seg-

mentation (using an algorithm to separate out a key segment
or subset of data) require schemes that reliably do not re-
move critical data.

As an example, a preliminary concept of operations from
the ultrahigh resolution CORALS mass spectrometer pro-
jects >5 Gb of data volume produced per analyzed sample
(with no data compression). With the CORALS instrument,
a high-resolution mass spectrum (i.e., m/Dm > 100,000 at
mass 100) requires a transient of approximately 840 ms
(Briois et al., 2016), equating to 222 (or *4 · 106 ) data
points at a sampling rate of 5 MHz. The number of data
points doubles if 1 · zero filling is applied, a common
practice for digital signal processing that serves to increase
frequency resolution. Assuming 16-bit vertical resolution, a
fast Fourier transform that includes both real and imaginary
components comprises 227 bits; however, the standard
CORALS data processing routine generates magnitude-
mode frequency spectra, thereby reducing the data volume
of a single analysis to 226 bits (or *67 Mb). The CORALS
laser system is capable of actively scanning across the sur-
face of a sample within a 500 mm diameter field-of-view,
enabling 2D chemical mapping. An elliptical laser beam
footprint with a minor diameter of 50 mm (due to a 45� angle
of incidence) at the sample surface results in a chemical
image with approximately 36 resolved ‘‘pixels,’’ multiply-
ing the data volume accordingly. Because repeated analyses
are essential to building statistical confidence and reducing
the risk for false positives (particularly for life-detection
missions, e.g., Neveu et al., 2018), triplicate measurements
at each image pixel would result in a >100 · increase in the
data volume for a single sample. Therefore, after accounting
for per-pixel sampling and replicate analysis, the single
sample uncompressed data volume from the CORALS in-
strument can easily exceed 5 Gb.

Due to limited downlink data rates (e.g., Hand et al.,
2017) and the large data volume of the CORALS instrument,
each sample spectrum would require substantial data re-
duction, pre-processing, and compression before transmitting
to Earth. Data compression could result in substantial re-
duction of the data quality and mass resolution, each of
which are critical features of the CORALS design. There-
fore, any loss in data quality due to compression negates the
significant analytical advantage of the CORALS instrument
over lower-resolution mass spectrometers. Thus, it is im-
portant to implement a balanced approach when using data
compression and segmentation, especially to preserve critical
information in high-resolution data such as those enabled by
CORALS. Likewise, developing, testing, and validating this
functionality during instrument development would signifi-
cantly improve onboard autonomy capabilities.

3. Concluding Remarks

New frontiers of scientific and specifically astrobiological
exploration bring about new challenges. As we broaden our
search for life elsewhere in the outer solar system’s ocean
worlds, our technological and scientific knowledge must
also advance to meet the requirements necessary to qualify a
sampling campaign as a life-detection event. In addition to
the well-known mechanical and operational challenges as-
sociated with exploring deep space, there are also con-
straints posed by data collection and transmission, or even
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mission lifetime (e.g., Europa and Venus). Many missions
have severe limitations on the volume of data that can be
transmitted, requiring innovative new strategies to optimize
data collection and prioritization. This is particularly im-
portant since life detection requires multiple lines of evi-
dence, from various instrument platforms, and within a
thoroughly investigated environmental context—a feat
which requires high volumes and diversity of data. For-
tunately, there are methods that go beyond the classical
compression and data partitioning schemes; novel ML
methods can form the basis of an onboard data budget by
making informed decisions based on real-time data collec-
tion and autonomous analysis. Science autonomy can also
triage targets and collected data. The key challenges of data
collection and transmission are ideally addressed in concert,
as they are not fully separable problems. They require us to use
all the knowledge we have from prior studies, particularly in
astrobiologically relevant Earth-based planetary analogs, as
well as an assessment of all the potential characteristics of the
environment to be studied. Investment in, and development of,
science autonomy capabilities expands our astrobiology dis-
covery capabilities; in some cases, it allows us to access new
scientific information and explore frontiers that would not be
possible otherwise. A successful science autonomy strategy
requires investment and development to ensure that the
methods are robust and reliable. Doing so ensures that state-
of-the-art methods are infused into the mission cycle, trace-
able from science objectives all the way to mission operations
and data interpretation, so that we can take full advantage of
exciting new frontiers of exploration.
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AI¼ artificial intelligence
ANNs¼ artificial neural networks
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